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The polyamine pathway has an essential role in many cellular functions and has been implicated in several pathological conditions. Ac-
cumulating evidence suggests that the polyamine system also plays a role in the etiology and pathology of mental disorders. Alterations
in the expression and activity of polyamine metabolic enzymes, as well as changes in the levels of the individual polyamines, have been
observed in multiple conditions, including schizophrenia, mood disorders, anxiety and suicidal behaviour. Additionally, these components
have been found to be altered by various psychiatric treatments. Further, the polyamines and their precursors have demonstrated both
antidepressant and anxiolytic effects. Overall, findings to date suggest that the polyamine pathway represents an important frontier for
the development of neuropharmacological treatments.

La voie des polyamines joue un rôle essentiel dans un grand nombre de fonctions cellulaires et elle a été mise en cause dans plusieurs
pathologies. Des données de plus en plus nombreuses indiquent que le système des polyamines joue aussi un rôle dans l’étiologie et la
pathologie des troubles mentaux. On a observé des altérations de l’expression et de l’activité des enzymes métaboliques des
polyamines, ainsi que des variations de la concentration de certaines polyamines dans de multiples affections, y compris la schizo-
phrénie, les troubles de l’humeur, l’anxiété et le comportement suicidaire. On a aussi constaté que divers traitements psychiatriques
modifiaient ces composantes. De plus, les polyamines et leurs précurseurs ont montré des effets à la fois antidépresseurs et anxioly-
tiques. Dans l’ensemble, les constatations actuelles indiquent que la voie des polyamines représente une frontière importante pour la
mise au point de traitements neuropharmacologiques.
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Introduction

Mostly owing to the elucidation of the molecular targets of
effective psychopharmaceutical agents, much of the neuro-
chemical work in mental disorders to date has focused on the
role of the monoaminergic system. Despite the success of
monoamine-related pharmacologic treatments, they are not
effective in many patients, indicating that these systems are
not the sole factors involved in these conditions. The role in
mental illness of an alternative pathway, the polyamine sys-
tem, has been gaining support. Although they are known
better for their role in modulating the cell cycle, and conse-
quently their relevance to cancer, research in the last few
decades has shown the importance of the polyamines in nu-
merous neurodegenerative conditions, and substantial evi-
dence is emerging that supports their role in the pathophysi-
ology of psychiatric disorders. Accordingly, the polyamines
represent an important system for understanding the causes

of mental illnesses and, in addition, provide a new pharma-
cologic target for their treatment.

This review focuses on evidence pertaining to altered lev-
els of the polyamines and their metabolic enzymes in psychi-
atry, as well as on the possible role the polyamine system
plays in the etiology of these disorders and mechanisms by
which its effects may occur. First, however, we discuss the
basic properties of the polyamines, as well as their metabo-
lism, localization in the central nervous system (CNS) and
relevant cellular functions.

Properties of the polyamine system

The polyamines are ubiquitous aliphatic molecules compris-
ing putrescine, spermidine and spermine, which contain 
2, 3 and 4 amino groups, respectively. In addition, the
guanidino-amine agmatine, whose presence in mammalian
brains was discovered much more recently than that of the
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other polyamines,1 may also be considered among this
group.2 Because of their essential roles in many cellular func-
tions, their homeostasis is highly regulated through their
biosynthesis, degradation and transport, as well as by the
interconversion between individual polyamines.

Metabolism and accumulation

Both the polyamine synthesis and interconversion pathways
have been extensively studied, and the major reactions are
depicted in Figure 1.

Because of their vital roles, the polyamine metabolic path-
ways are highly regulated. The major rate-limiting enzymes
are ornithine decarboxylase (ODC), S-adenosylmethionine
(SAMe) decarboxylase (AMD1), and spermidine/spermine
N1-acetyltransferase (SAT1), whose activities are controlled
at multiple levels by numerous mechanisms, including feed-
back control by the polyamines themselves.3 The activities of
spermidine synthase (SRM) and spermine synthase (SMS) are
generally constant, although there may be induction under
certain conditions.4 Polyamine oxidase (PAO) activity ap-
pears to be regulated by substrate availability.5

Multiple transport systems have been identified and have
been found in various cell types, including hepatocytes,
synaptosomes, synaptic vesicles and glial cells.6–8

CNS localization

The polyamines and their biosynthetic enzymes are found
throughout the body, including the CNS, where they display
specific regional distributions. Many methods have been
used to assess these distributions in the CNS (for a review,
see Bernstein and Müller9). Both agmatine and its precursor
arginine have been shown to cross the blood–brain barrier,
allowing both the concentration and localization of agmatine
in the brain to be determined by peripheral agmatine and
arginine levels as well as through endogenous synthesis by
the inducible enzyme arginine decarboxylase.1,10 Putrescine,
spermidine and spermine possess only a limited capacity to
cross the blood–brain barrier,11 and as such, their localization
in the healthy CNS largely represents those which have been
endogenously synthesized. Concentrations in brain tissues
are typically in the nM range.12 The localization and concen-
trations of each of the metabolic enzymes and polyamines are
not identical for brain region or cell type,9,13–20 indicating that
synthesis and storage may not occur in identical locations.

Cellular effects

The polyamines have numerous roles and are involved in
many aspects of cellular function. Owing to their cationic
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Fig. 1: Polyamine synthesis and interconversion pathways. MTA = 5′ methylthioadenosine; SAT1 = spermidine/spermine N1-acetyltrans-
ferase; SMS = spermine synthase; SMOX = spermine oxidase; AMD1 = S-adenosylmethionine decarboxylase; PAO = polyamine oxidase;
SAMe = S-adenosylmethionine; dcSAMe = decarboxylated SAMe; SRM = spermidine synthase; ODC = ornithine decarboxylase; AGMAT =
agmatinase.



nature, they interact well with nucleic acids and, not surpris-
ingly, are involved in many aspects of gene expression.3 In
addition, polyamines influence the properties of proteins and
membranes3,21 and function as antioxidants and scavengers of
reactive oxygen species.22,23

The polyamines have an important role in cell proliferation
and demonstrate both pro- and antiapoptotic effects.24 Addi-
tionally, the polyamines are involved in many signalling path-
ways through their effects on G proteins, protein kinases, nu-
cleotide cyclases and receptors, as well as by their regulatiion
of the expression of proteins involved in these processes.3,24,25

Owing to their interactions with several transmembrane chan-
nels, they also influence the electrical properties of excitable
cells.26 Agmatine is believed to act as a neurotransmitter by its
actions through several receptors, and this theory is sup-
ported by its storage in synaptic vesicles and its capacity to be
released on depolarization.27 Spermine has also been shown to
be released from synaptic vesicles on depolarization, indicat-
ing that the polyamines may function as neuromodulators.7

Additionally, polyamines influence the properties of several
neurotransmitter pathways known to be involved in mental
disorders, including the catecholamines,28–32 γ-amino-butyric
acid,33–36 nitric oxide37 and glutamate.38–42

Possible implication in mental disorders

Schizophrenia

The role of the polyamine system in the pathology of schizo-
phrenia and other psychotic disorders was first proposed by
Richardson-Andrews, who noted that the structures of cer-
tain neuroleptics and antimalarials both contain a spermidine

moiety and are associated with extrapyramidal symptoms
and psychosis.43,44 Since this time, alterations of many aspects
of the polyamine system have been observed in both human
schizophrenia patients and animal models. Further, certain
treatments for schizophrenia have been shown to alter both
polyamine levels and the activities of polyamine-related en-
zymes, supporting the role of the polyamine system in the
pathophysiology of this disorder. A summary of relevant
studies performed in human subjects is found in Table 1.

Polyamine levels

Increased blood levels of all polyamines have been observed
in schizophrenia patients.50,52–54,60 Levels appear to be related to
neuroleptic treatment because increased concentrations were
observed in treated patients in comparison with untreated
patients and control subjects.57 This effect may be related to
treatment response because no changes in polyamine levels
were found after clozapine treatment of neuroleptic-resistant
schizophrenia patients.53

Unlike the periphery, a study of human brains found no
differences in polyamine levels in the frontal cortex or hip-
pocampus of schizophrenia patients in comparsion with con-
trol subjects.55 However, because levels of the polyamines
and some of their metabolic enzymes are known to vary with
postmortem interval13,14,16,55 which could not be fully controlled
for in this experiment, further studies are warranted to con-
firm these findings.

Enzyme activities

Studies examining serum from schizophrenia patients have
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Table 1: Summary of findings from studies analyzing the polyamine system in schizophrenia

Study Findings System

Meltzer et al45 Plasma amine oxidase activity lower in schizophrenia patients, only significant for acute cases. Plasma

Baron et al46 Plasma amine oxidase activity unaltered after 3 mo neuroleptic treatment. Plasma

Baron et al47 Reduced plasma amine oxidase activity associated with schizophrenia spectrum disorders within families. Plasma

Baron et al48 Small, nonsignificant reduction in plasma amine oxidase activity.

Familial transmission may occur in families where probands have extremely low activity.

Plasma

Gruen et al49 Plasma amine oxidase activity unrelated to subtype, diagnostic criteria, prognosis or age at onset. Plasma

Svinarev50 Increased spermidine. Serum

Flayeh51 Increased spermidine oxidase activity, unrelated to sex, age or treatment. Serum

Das et al52 Increased polyamines, no correlation with sex or treatment.

Increased PAO activity.

Whole blood,
plasma

Das et al53 Increased polyamines in neuroleptic-resistant patients compared with healthy control subjects, unchanged after
6 mo clozapine treatment.

Blood

Ramchand et al54 Increased polyamines in fibroblasts.

Increased spermine in culture medium.

Skin fibroblasts

Gilad et al55 No alterations in polyamines, ODC, AMD1 or SAT1. Frontal cortex,
hippocampus

Bernstein et al56 No alterations in ODC immunoreactivity. Entorhinal cortex

Das et al57 Increased total polyamines in neuroleptic-treated schizophrenia patients compared with control subjects and
untreated patients.

Skin fibroblasts

Dahel et al58 Increased PAO activity, normalized in patients improved after ECT. Serum

Middleton et al59 Decreased activities of OAT, AZIN1 and OCD, no relation to treatment. Prefrontal cortex

PAO = polyamine oxidase; ODC = ornithine decarboxylase; AMD1 = S-adenosylmethionine decarboxylase; SAT1 = spermidine/spermine N1-acetyltransferase; ECT = electroconvulsive
therapy; OAT = ornithine aminotransferase; AZIN1 = antizyme inhibitor; OCD = ornithine cyclodeaminase.
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shown increased levels of polyamine oxidative enzymes,51,58

which were normalized in patients who showed improve-
ment in clinical symptoms after electroconvulsive therapy
(ECT).51,58 Early studies of the relation between plasma amine
oxidase and schizophrenia demonstrated a trend toward de-
creased activity that may have been associated with familial
transmission of the disorder.45,47,48 Although plasma amine ox-
idase is not specific for the polyamines, decreases in activity
combined with increases in polyamine concentrations might
be expected to alter its substrate profile.

The role of ODC is less clear. Studies in schizophrenia pa-
tients found no differences in ODC levels or activity in the
frontal cortex, hippocampus, or entorhinal cortex.55,56 How-
ever, increased activity was observed in cortical neurons
from a rat model of schizophrenia.61 Although these results
may indicate that the animal model does not properly repre-
sent the neurobiology of schizophrenia, it may be that differ-
ences in ODC activity are found only in specific CNS regions
that have not yet been clearly identified in humans. Interest-
ingly, ECT has been shown to increase ODC activity in mul-
tiple regions of rat brains.62,63

Regardless of the findings with ODC, there is support for
the hypothesis of alterations in ornithine metabolism in
schizophrenia because the activities of ornithine aminotrans-
ferase (OAT), antizyme inhibitor (AZIN1) and ornithine cy-
clodeaminase (OCD) were shown to be decreased in the pre-
frontal cortex of both treated and untreated patients.59

Information on the activities of other enzymes is lacking,
although, in addition to no evidence of altered polyamines or
ODC activity, Gilad and colleagues55 were unable to demon-
strate changes in AMD1 or SAT1 activities.

Potential mechanisms

The complexity of this system makes it unlikely that a single
mechanism is responsible, and hence, a simple explanation is
impossible. One possibility is that the increased peripheral
polyamine concentrations are a result of decreased plasma
amine oxidase activity and that the increased PAO activity is
a compensatory mechanism to decrease these levels. It would
be of interest to determine whether the normalization of PAO
activity in clinically improved patients is also associated with
normalization of polyamine levels. Additionally, oxidative
deamination by both plasma amine oxidase and PAO yields
compounds capable of causing cell damage,24 and as such, al-
terations in their activities could reflect either a causative role
or compensatory mechanisms to reduce this damage.

The mechanism in the brain is even less clear, and further
studies are necessary to provide a consensus on the actual
levels of the polyamines in each brain region as well as on the
activities and relations between each enzyme. The decreased
expression of OAT and OCD in the prefrontal cortex should
theoretically provide increased ornithine for polyamine pro-
duction, but decreased expression of AZIN1 would allow for
increased inhibition of ODC. It has been proposed that these
results may reflect either a mechanism to compensate for in-
creased polyamine levels or, possibly, an attempt to down-
regulate the entire pathway.59

As mentioned above, the polyamines act on the dopamine
pathway. Because this system is strongly associated with 
the pathology of schizophrenia, its modulation by the
polyamines could be of great relevance to both the etiology of
this illness and in influencing the clinical outcome of anti-
dopaminergic treatments.

Polyamines alter the functioning of N-methyl-D-aspartate
receptors (NMDAR),26 and it has therefore been proposed
that the increased polyamine levels in schizophrenia patients
are related to the implication of hypofunctional NMDAR sig-
nalling in schizophrenia.57 In this case, increased polyamines
should be associated with increased glutamate signalling,
with increases representing a compensatory mechanism. Al-
ternatively, because excessive glutamate signalling can pro-
duce excitotoxicity,64 polyamines may instead be destructive
rather than beneficial. However, if polyamine levels are con-
firmed to be unchanged in the brain, these mechanisms may
not be applicable.

It seems clear that the neuroleptics are capable of influenc-
ing polyamine metabolism; however, the mechanisms in-
volved are not yet apparent. Although polyamines were
higher in treated patients,57 their lack of change in
neuroleptic-resistant patients53 suggests that the effects of
neuroleptics on the polyamine system occur further down-
stream and may mediate responses rather than determining
whether a response to treatment will occur.

Obviously, significant work remains to determine the pre-
cise role of the polyamine system in schizophrenia, and al-
though it seems clear that dysregulation of the system is as-
sociated with this illness, it is not yet certain whether these
alterations are etiologically related or represent compen-
satory mechanisms.

Mood disorders and suicide

As with schizophrenia, the ability of antimalarials to produce
depressive symptoms has been proposed as an indication that
the polyamines have a role in depression.44 Although there
have been fewer studies examining the polyamine system in
mood disorders in humans, evidence also exists to implicate
this system in their pathology. In addition, emerging evidence
points to a role of the polyamine system in suicidal behaviour.
A summary of studies examining the polyamine system in
mood disorders in human subjects is found in Table 2, and rel-
evant animal studies are shown in Table 3, Table 4 and Table 5.

Polyamine levels

Although Gilad and colleagues55 found no differences in
polyamine levels in the hippocampus and frontal cortex of
patients with depression, a rat model displayed decreased
hippocampal putrescine, spermidine and spermine, as well
as decreased putrescine in the nucleus accumbens septi.68 In
addition, plasma agmatine was significantly elevated in pa-
tients with depression and was normalized by antidepressant
treatment.65 Agmatine produces both antidepressant and anx-
iolytic effects in animals through mechanisms involving mul-
tiple receptor systems.40,70–72,81,84 The antidepressant effects of



putrescine also appear to involve NMDAR,42 and the possibil-
ity that at least some of the role of polyamines in depression
is due to modulation of NMDAR is supported by the mecha-
nism of the antidepressant eliprodil, which acts as an antago-
nist at polyamine-binding sites.88 SAMe also produces antide-
pressant effects in humans.89 The exact mechanism remains
uncertain, but animal studies have indicated that antidepres-
sant dosages of SAMe could normalize putrescine and par-
tially restore spermine and spermidine levels.68 However, be-
cause SAMe is also required for synthesis of dopamine,
norepinephrine and serotonin and is essential for folate and
vitamin B12 metabolism, each of which are implicated in
mood disorders,90 its antidepressant effects may not necessar-
ily be mediated through the polyamine system.

Enzyme activities

As with schizophrenia patients, high levels of plasma PAO
activity were observed in depression patients, and these were
normalized by ECT.58 Also similar, no differences were ob-
served in ODC levels in the entorhinal cortex of depression
patients,56 nor were they observed in the activities of ODC,
AMD1 or SAT1 in the hippocampus or frontal cortex of pa-
tients who suffered from depression or committed suicide.55

However, studies performed by our group, using suicide

completers both with and without depression, demonstrated
a downregulation of SAT1 in several brain regions.66,67 SAT1
expression was more profoundly decreased in suicide com-
pleters who suffered from depression66 and was lower in the
posterior cingulate gyrus of depressed, compared with non-
depressed, suicide completers,67 suggesting an important role
in depression. Additional studies performed by our group
have identified other polyamine-related genes that are dys-
regulated in the limbic system of suicide completers,67 pro-
viding further support for an involvement of the polyamine
pathway in depression and suicide.

Potential mechanisms

The antidepressant effects of agmatine, putrescine and SAMe
support the possibility that the polyamine system has a role
in depression and perhaps in other mood disorders. As with
schizophrenia, however, the relation between polyamine
concentrations and activities of the associated enzymes can-
not be formulated into a simple explanation. To gain a better
understanding of the roles of the polyamines in depression
and suicidal behaviour, it is essential to determine the actual
levels of each of the polyamines in the CNS. As with schizo-
phrenia, further studies are required to assess whether dys-
regulation of the polyamine system should be considered a
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Table 2: Summary of polyamine-related findings in human mood disorder studies

Study Findings System

Gilad et al55 No alterations in levels of polyamines, ODC, AMD1 or SAT1 in depression patients or suicide completers. Frontal cortex,
hippocampus

Bernstein et al56 No alterations in ODC immunoreactivity in depression patients. Entorhinal cortex

Halaris et al65 Increased agmatine in depression patients, normalized after 8 wk of bupropion treatment. Plasma

Dahel et al58 Increased PAO activity in patients with severe depression, normalized in patients showing improvement after ECT. Serum

Sequeira et al66 Decreased SAT1 expression in suicide completers both with and without depression, results more profound in
suicide completers with depression.

Orbital cortex,
motor cortex,
dorsolateral
prefrontal cortex

Sequeira et al67 Increased hippocampal expression of SAT2 and OATL1 in suicide completers without depression, increased SMS
in suicide completers both with and without depression.

Decreased SAT1 expression in the posterior cingulate gyrus in suicide completers with depression, compared with
those not suffering from depression.

Amygdala,
hippocampus,
anterior cingulate
gyrus, posterior
cingulate gyrus

ODC = ornithine decarboxylase; AMD1 = S-adenosylmethionine decarboxylase; SAT1 = spermidine/spermine N1-acetyltransferase; PAO = polyamine oxidase; ECT = electroconvulsive
therapy; OAT = ornithine aminotransferase; SMS = spermine synthase.

Table 3: Summary of findings from rodent studies examining the relation between depression and the polyamine system

Study Findings

Genedani et al68 Depression model displayed decreased putrescine, spermidine and spermine in hippocampus, decreased putrescine in nucleus
accumbens septi, no changes in frontal cortex.

SAMe normalized putrescine in nucleus accumbens, partially restored hippocampal spermine and spermidine.

Zomkowski et al40 Agmatine antidepressant effects involve NMDAR, L-arginine-NO pathway and α
2
-adrenoceptors.

Li et al41 Agmatine antidepressant effects involve NMDAR.

Aricioglu and Altunbas69 Agmatine demonstrated antidepressant effects.

Zomkowski et al70 Agmatine antidepressant effects involve 5-HT1A/1B and 5-HT2 receptors.

Zomkowski et al71
Agmatine antidepressant effects involve δ- and μ-opioid receptors.

Zomkowski et al42 Putrescine antidepressant effects involve NMDAR.

Zeidan et al72 Agmatine antidepressant effects involve imidazoline I-1 and I-2 receptors.

SAMe = S-adenosylmethionine; NMDAR = N-methyl-D-aspartate receptors; NO = nitric oxide; 5-HT = 5-hydroxytryptamine.
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cause or a consequence of these disorders. However, as dis-
cussed below, evidence suggests that dysregulation of the
system may precede development of mood disorders.

Polyamine stress response

Of considerable interest in regard to the role of the polyamine

Table 4: Summary of findings from rodent studies examining the relation between stress, anxiety and the polyamine system

Study Findings

Butler and Schanberg73 Infant cerebellar putrescine and brain ODC activity decreased after maternal separation.

Gilad et al74 Only chronic lithium treatment prevented glucocorticoid-induced increases in ODC, AMD1 and SAT1 activity in hippocampus and
frontal cortex.

Gilad and Gilad75 Hippocampal ODC activity increased after each episode of chronic intermittent stress, first episode reduced hippocampal AMD1
activity and increased liver ODC activity, but both remained constant after all subsequent treatments.

Chronic lithium treatment only prevented increases in hippocampal ODC activity.

Gilad et al76 Decreased hippocampal ODC and AMD1 activities after acute stress at day 5, no change in striatal ODC activity.

Adult PSR pattern in hippocampus and striatum apparent at day 30.

Increased behavioural responses and attenuated increases in ODC activity when stressed at day 7 and then rechallenged as
adults.

Gilad et al77 Adult behavioural responses reduced in animals subjected to mild intermittent postnatal stress and increased in animals that
received acute postnatal stress.

No differences in stress-induced ODC activity between adults who received either mild or acute postnatal stress.

Enhanced increase in liver ODC activity when subjected to acute postnatal stressors and then rechallenged as adults.

Adult polyamine concentrations unaffected by postnatal stressors.

Gilad et al78 ODC activity and putrescine increased in liver and decreased in thymus after acute stress at all ages, only increased in
hippocampus of adults.

Basal ODC activity after adrenalectomy increased in hippocampus and thymus and decreased in liver; increased basal putrescine
and spermine in hippocampus and basal putrescine in thymus.

Adrenalectomy enhanced stress-induced changes in ODC activity in hippocampus, liver, and thymus, and putrescine changes in
liver and thymus.

Gilad et al79 Putrescine increased in hippocampus after each stress episode; increases in spermidine and spermine delayed and transient.

α-DFMO combined with stress depleted putrescine and decreased spermidine and spermine in hippocampus, produced
behavioural changes.

Sohn et al80 Acute stress increased putrescine in frontal cortex and hippocampus.

Chronic stress did not alter putrescine, spermidine or spermine.

Putrescine concentrations differ between rat strains.

Gilad and Gilad25 Greater induced changes in ODC and polyamines in rat strain more reactive to stress.

Lavinsky et al81 Agmatine anxiolytic effects occur either through NOS, NMDAR or α
2
-adrenoceptors.

Aricioglu and Altunbas69 Agmatine demonstrated anxiolytic effects.

Aricioglu et al82 Increased agmatine in plasma and frontal cortex during stress, no changes in hypothalamus, medulla, cerebellum or hippocampus.

Hayashi et al83 Stress increased putrescine and decreased spermine in frontal cortex and hypothalamus, no effects in plasma.

Anxiolytic pretreatment prevented putrescine increases.

Gong et al84 Agmatine demonstrated anxiolytic effects.

Li et al85 Agmatine increased hippocampal neurogenesis in chronically stressed mice.

Lee et al86 Stress increased brain putrescine, prevented by anxiolytic pretreatment.

No alterations in spermine, spermidine or acetylated products.

ODC = ornithine decarboxylase; AMD1 = S-adenosylmethionine decarboxylase; SAT1 = spermidine/spermine N1-acetyltransferase; PSR = polyamine stress response;  
α-DFMO = α-difluoromethylornithine; NOS = nitric oxide synthase; NMDAR = N-methyl-D-aspartate receptors.

Table 5: Additional animal studies examining the relation between the polyamine system and mental disorders.

Study Findings

Hirsch et al30 Spermidine and spermine acted selectively on mesolimbic, but not striatal, dopamine system.

Bondy et al62 Transiently increased ODC activity in adrenals, hippocampus, brain stem, frontal cortex and cerebellum after ECT.

Dose–response for shock intensity and ODC activity in hippocampus and brain stem.

Bo et al29 Spermine produced dose-dependent cortical synchronization and sedation.

Spermidine produced cortical synchronization at low dosages and cortical desychronization and behavioural arousal at higher
dosages.

Spermine and spermidine inhibited methamphetamine-induced behaviour.

Orzi et al63 Hippocampal ODC increased after repeated ECT.

Zawia and Bondy87 Increased cerebral ODC after single ECT, effects partially attenuated by using an NMDAR antagonist.

Bastida et al28 α-DFMO treatment with polyamine-deficient diet reduced adrenal polyamines and catecholamines and plasma corticosterone and
aldosterone.

ODC = ornithine decarboxylase; ECT = electroconvulsive therapy; NMDAR = N-methyl-D-aspartate receptors; α-DFMO = α-difluoromethylornithine.
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system in the morbidity and etiology of psychiatric disorders
is the polyamine stress response (PSR). This phenomenon has
been reviewed by Gilad and Gilad25 and is implicated in the
detrimental effects of stress and anxiety and in their role in
the development of other psychiatric disorders. Studies as-
sessing the PSR, as well as animal models of anxiety, are
summarized in Table 4.

Unlike the peripheral system, where acute stressors acti-
vate the PSR to increase the concentrations of all
polyamines,91 acute stressors in the CNS result only in the ele-
vation of ODC activity and putrescine and agmatine lev-
els.25,82 The PSR can be induced by multiple forms of stress,
and its magnitude appears to be related to the intensity of the
stressor.74,78 Consistent with this are findings that anxiolytic
pretreatment can diminish or eliminate stress-induced alter-
ations of the polyamine system.83,86 Chronic stress increases
ODC activity and putrescine levels after each application,
whereas spermidine and spermine concentrations increase
only after several treatments, which is suggestive of an adap-
tive response.79

In support of a role of the PSR in behavioural responses to
stress, increases in polyamine levels and ODC activity were
found to be larger in strains of rats exhibiting greater behav-
ioural and physiologic responsiveness to stress.25,80 Further,
chronic administration of α-difluoromethylornithine 
(α-DFMO), an irreversible inhibitor of ODC, yielded rats
which displayed distinctive behavioural changes when ex-
posed to stressors.79 Interestingly, memory impairments have
been observed in both ODC- and SAT1-overexpressing mice,
which possess substantially increased putrescine levels.92,93

Additionally, SAT1-overexpressing mice are hypomotoric
and display decreased aggressiveness.93 It has been proposed
that partial blockade of NMDAR by putrescine may be in-
volved in these effects.94

The PSR appears to be developmentally regulated and may
be associated with the development of mood disorders. Early
postnatal stressors have been shown to alter putrescine con-
centrations and ODC activity73 and yield altered behavioural
reactivity and an attenuated PSR in adults.77 Further, the
emergence of the characteristic adult PSR is correlated with
the cessation of the hyporesponsive period of the
hypothalamic-pituitary-adrenocortical (HPA) axis system.76

Because this developmental stage in rats is equivalent to a pe-
riod in humans associated with a high incidence of affective
disorders, it has been proposed that the PSR might therefore
be involved in development of these conditions.76 The HPA
axis is implicated in depression, and effects are believed to be
associated with dysregulation of the glucocorticoid system.95

Consequently, the occurrence of a characteristic PSR after glu-
cocorticoid treatment adds further weight to the theory that
the PSR and the polyamines are involved in the development
of affective disorders.79 Additionally, the combination of treat-
ment with α-DFMO and a polyamine-deficient diet reduced
polyamine, catecholamine and corticosteroid concentrations.28

Overall, these results suggest that the PSR, through modula-
tion of the HPA axis, may be directly involved in the patho-
genesis of depression and shed some light on the relevance of
environmental influences in the etiology of this disorder.

Lithium is commonly used in the treatment of bipolar dis-
order, and although many cellular effects have been pro-
posed, the precise mechanisms by which it exerts its thera-
peutic effects have not been fully determined. Considerable
work has investigated the influence of lithium on the PSR.
Specifically, chronic lithium treatment prevents stress-
induced ODC activity in rat brains, thereby decreasing the in-
tensity of the PSR.74,75 Decreased ODC activity is not due to a
direct interaction with lithium96 and was proposed to be a re-
sult of interference with a signal required for induction of
ODC.25 In vitro experiments demonstrated that these de-
creases may be associated with altered glial cell properties.97

Conclusion

Several lines of evidence support a possible role for the
polyamine system in the neurobiology of major psychiatric
disorders and suicide. The significant number of metabolic
enzymes that show altered expression in these disorders, the
findings of altered levels and ratios of each polyamine and
the effects of psychiatric treatments on many aspects of the
polyamine system each add support for the idea that modu-
lation of this system may represent a possible pharmacologic
target in the treatment of these disorders. Because the precise
mechanisms involved have not yet been fully elucidated, it
seems clear that the study of this system remains a crucial
frontier for understanding the pathophysiology of several
mental disorders, including schizophrenia, mood disorders
and suicide.
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